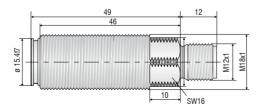
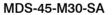
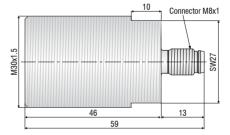


MDS-45 is the industry-standard version of the magneto-inductive sensor. These stand out due to the common characteristics of this product series and also because of their very robust standard housing. The sensors are available in M18 and M30 stainless steel housings,

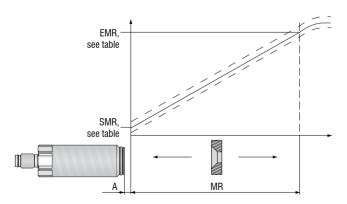

as well as with a flat plastic housing. The stainless steel housing is ideally suited to demanding environments (dirt, oil, chemicals) and the food industry.





MDS-45-M18-SA (01)

6


Model		MDS-45-M18-SA	MDS-45-M18-SA(01)	MDS-45-M18-HP-SA	MDS-45-M30-SA	MDS-45-K-SA						
Measuring range (standard) 1)		45 mm (for other measuring ranges see page 18)										
Magnet included in delivery		MB45	- MB45		MB45	MB45						
Offset distance 1)			2.25 mm		4 r	nm						
Linearity 1) 2)		< ± 3 % FSO										
Temperature stability		± 250 ppm FSO/K										
Resolution 3)			< 0.05 % FSO		voltage: <0.05 % FSO / current: <0.2 % FSO							
Frequency response (-3 dB)		3000 Hz 1000 Hz										
Electrical connection		M8x1 plug; 4 poles	M12x1 plug; 4 poles	M8x1 plug; 4 poles	8x1 plug; 4 poles							
	veltage	:	$2 V \pm 0.3 V \dots 9.6 V \pm 0$.4 V	$2V\pm0.2V9.6V\pm0.4V$	$2~V\pm0.4~V~~9.6~V\pm0.4~V$						
	voltage	load (11.5 V supply) \geq 30 K Ω ; load (24 V supply) \geq 10 K Ω										
Physical output parameters	current				4 mA \pm 0.4 mA 19.2 mA \pm 0.8 mA	$4 \text{ mA} \pm 0.8 \text{ mA} \dots$ 19.2 mA $\pm 0.8 \text{ mA}$						
	current	load (11.5 V supply) \leq 400 Ω load (24 V supply) \leq 800 Ω										
Storage temperature		-20 +80 °C										
Operating temperature		-20 +80 °C										
Supply voltage		11.5 30 VDC										
Current consumption		max. 20 mA (with voltage output) max. 40 mA (with current output)										
Protection class		IP67 ⁴); higher protection class available on request										
Pressure resistance (static)		100 ba	ar (front)	400 bar (front)	40 bar (front)							
Vibration		DIN EN 60068-2-6 (20 g, 58 500 Hz)										
Shock		DIN EN 60068-2-29 (40 g, 6 ms, 1000 cycles) DIN EN 60068-2-27 (100 g, 6 ms, 3 cycles)										
EMC		EN 61326-1:2006; EN 61326-2-3:2007										
Housing material			st	ainless steel	plastics / nickel-plate							
Weight (without nuts)			approx. 40 g		approx. 110 g	approx. 25 g						
FSO = full scale output												

FSO = full scale output

¹ Measuring range changes by using other magnets (see catalog p.18); external magnetic fields and/or ferromagnetic material in the measuring range of the sensor system affect the sensor characteristic line and the technical data.

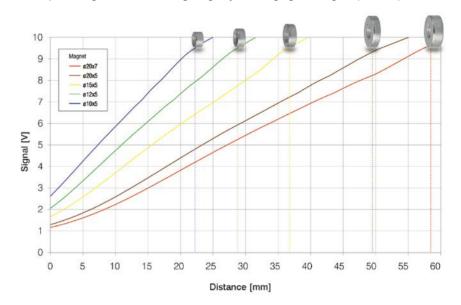
² Deviation to the regression curve according to the method of least squares ³ Peak-Peak, external first-order low pass; frequency response 5 kHz ⁴ Plugs only in mated and locked condition

Sensor signal

MDS-45	EMR	SMR	Offset distance A				
-M18-SA	$9.6V\pm0.4V$	2V ±0.3V	2.25 mm				
-M18-SA(01)	$9.6V\pm0.4V$	2V ±0.3V	2.25 mm				
-M18-HP-SA	$9.6V\pm0.4V$	2V ±0.3V	2.25 mm				
-M30-SA	$\begin{array}{c} 19.2 \text{ mA} \pm 0.8 \text{ mA} \\ 9.6 \text{ V} \pm 0.4 \text{ V} \end{array}$	$\begin{array}{c} 4 \text{ mA} \pm 0.4 \text{ mA} \\ 2 \text{ V} \pm 0.2 \text{ V} \end{array}$	4 mm				
-K-SA	$\begin{array}{c} 19.2 \text{ mA} \pm 0.8 \text{ mA} \\ 9.6 \text{ V} \pm 0.4 \text{ V} \end{array}$	$4 \text{ mA} \pm 0.8 \text{ mA}$ 2 V ± 0.4 V	9.1 mm*				

* relates to center of the mounting hole

mainSENSOR

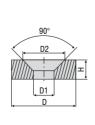

Magnets

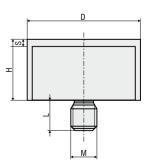
18

The magnets are critical components of the magneto-inductive measuring principle.

Many shapes and materials are available Application, installation space, temperature and cost factors must be considered. A decisive advantage is that the measuring range of the sensor can be defined by selecting the appropriate magnet. Adapting or set up of the sensor are unnecessary.

Therefore, measuring ranges of 20 to 55mm can be achieved using only one sensor.




				Standard magnets				Standard magnets in pressure housing							
						Dimensions [mm]			nm]		Dimensions [mm]				1]
Designation	Measuring range MDS-45 [mm]	Measuring range MDS-35 HT [mm]	Measuring range MDS-40-MK [mm]	T _{max} [°C]	Material	d	D1	D2	Н	Material	d	Н	L	М	S
MB20	20	14	-	150	NeFeB, nickel-plated	10	4.3	8.6	5	1.3964 Nitronic 50HS	16	9.5	5	M4	2
MB27	27	18	~ 23	150	NeFeB, nickel-plated	12	4.3	8.6	5	1.3964 Nitronic 50HS	16	9.5	5	M4	2
MB35	35	24	~ 33	150	NeFeB, nickel-plated	15	4.3	8.6	5	1.3964 Nitronic 50HS	26	14	7	M6	3.5
MB45	45	32	~ 45	150	NeFeB, nickel-plated	20	4	8	5	1.3964 Nitronic 50HS	26	14	7	M6	3.5
MB55	55	38	~ 50	150	NeFeB, nickel-plated	20	4	8	7	1.3964 Nitronic 50HS	26	14	7	M6	3.5
RL21	33	22	~ 30	200	SrFe, hard ferrite	20	4.3	-	10	-	-	-	-	-	-
RL20	25	12	~ 25	200	SrFe, hard ferrite	20	4.3	-	6.5	-	-	-	-	-	-
MB35HT	52	35	-	250	Sm2Co5	22	5.2	10.4	6	-	-	-	-	-	-

Magnets at higher temperatures

Permanent magnets present reversible and irreversible temperature dependence. With low temperatures, the magnetic field changes reversibly with the temperature. In the first approximation, this dependence is linear. Irreversible attenuations of the magnetic field are caused by rising temperatures. The main part of these attenuations arises when the temperature is reached for the first time. Therefore, it is recommended that when using magnets in high temperatures, they are heated up only once to the operating temperature or to around 20 °C above the operating temperature, provided that the respective magnet specification allows this.

Please refer to Micro-Epsilon TechNote T016 for further details.

A pressure housing is a method of protecting a magnet from high pressure or aggressive media. This is made from robust stainless steel and resists pressures up to 400 bar.

Simple change of the measuring range by exchanging the magnet (MDS-45)